Strange behavior of a passive scalar in a linear velocity field.
نویسندگان
چکیده
Damping (or growth) rates of a typical realization, mean-field and high-order correlation functions of a passive scalar (e.g., a number density of particles) advected by a linear velocity fields are estimated. It is shown that all statistical moments higher than the first moment and a typical realization of a passive scalar without an external pumping decay for both laminar and random incompressible linear velocity fields. Strong compressibility of a laminar linear velocity field can result in a growth of a typical realization and the high-order moments of a passive scalar. It is demonstrated that for a laminar compressible linear velocity field the flux of particles from the infinity does not vanish and the total number of particles is not conserved. For a random compressible linear velocity field a typical realization decays whereas the high-order moments of a passive scalar can grow. Comparison of the obtained results with those for dynamics of a passive scalar advected by a homogeneous isotropic and compressible turbulent flow with a given longitudinal two-point correlation function F=1-r(2) is performed (where r is the distance between two points measured in the units of the maximum scale of turbulent motions).
منابع مشابه
Simulation of Low Reynolds Number Isotropic Turbulence Including the Passive Scalar
Full simulations of homogeneous isotropic turbulence containing a homogeneous passive scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral behavior of the two fields are quite similar; both fields decay as power-law functions of time. However. the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of...
متن کاملStrange quark matter attached to string cloud in general scalar tensor theory of gravitation
Bianchi type-VI0 space time with strange quark matter attached to string cloud in Nordtvedt [1] general scalar tensor theory of gravitation with the help of a special case proposed by Schwinger [2] is obtained. The field equations have been solved by using the anisotropy feature of the universe in the Bianchi type-VI0 space time. Some important features of the model, thus obtained, have been di...
متن کاملرد تانسور انرژی- تکانه و پسزنی گرانشی اسکالرهای شوینگر در فضازمان دوسیته سهبعدی
In this paper, we consider a massive charged scalar field coupled to a uniform electric field background in a 3 dimensional de Sitter spacetime. We consider the value of the dimensionless coupling constant of the scalar field to the scalar curvature of a 3 dimensional de Sitter spacetime equal to 1/8. We compute the expectation value of the trace of the energy-momentum tensor in the in-vacuum s...
متن کاملIntermittency of a passive scalar advected by a quasifrozen velocity field
We use a two-dimensional lattice model to study the intermittency problem of a passive scalar advected by a velocity field of finite correlation time. The stream function generating the incompressible velocity field is modeled by a random Gaussian noise that is identically independently distributed at each lattice point and is updated every certain finite time interval. A fixed scalar differenc...
متن کاملMean-field theory for a passive scalar advected by a turbulent velocity field with a random renewal time.
Mean-field theory for turbulent transport of a passive scalar (e.g., particles and gases) is discussed. Equations for the mean number density of particles advected by a random velocity field, with a finite correlation time, are derived. Mean-field equations for a passive scalar comprise spatial derivatives of high orders due to the nonlocal nature of passive scalar transport in a random velocit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 63 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2001